curso del sistema electronico del automovil
martes, 4 de junio de 2013
domingo, 2 de junio de 2013
Tecnologia del grafeno
El grafeno es una sustancia formada por
carbono puro, con átomos dispuestos en un patrón regular hexagonal
similar al grafito, pero en una hoja de un átomo de espesor. Es muy
ligero, una lámina de 1 metro cuadrado pesa tan sólo 0,77 miligramos.
El grafeno es un alótropo del carbono, un teselado
hexagonal plano (como panal de abeja) formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados.
El Premio Nobel de Física de 2010 se le otorgó a Andre Geim y a Konstantin Novoselov por sus revolucionarios descubrimientos acerca del material bidimensional grafeno.[1] [2]
Mediante la hibridación sp2 se explican mejor los ángulos de enlace, a 120°, de la estructura hexagonal del grafeno. Como cada uno de los carbonos contiene cuatro electrones de valencia en el estado hibridado, tres de esos electrones se alojan en los híbridos sp2, y forman el esqueleto de enlaces covalentes simples de la estructura.
El electrón sobrante se aloja en un orbital atómico de tipo «p» perpendicular al plano de los híbridos. El solapamiento lateral de dichos orbitales da lugar a formación de orbitales de tipo π. Algunas de estas combinaciones propician un gigantesco orbital molecular deslocalizado entre todos los átomos de carbono que constituyen la capa de grafeno.
El nombre proviene de intercambio –en el vocablo grafito– de sufijos: «ito» por «eno»: propio de los carbonos con enlaces dobles. En realidad, la estructura del grafito puede considerarse una pila de gran cantidad de láminas de grafeno superpuestas.[3] Los enlaces entre las distintas capas de grafeno apiladas se deben a fuerzas de Van der Waals e interacciones de los orbitales π de los átomos de carbono.
Estructura cristalina del grafito. Se ilustran las interacciones de las diversas capas de anillos aromáticos condensados.
En el grafeno, la longitud de los enlaces carbono-carbono es de aproximadamente 1,42 Å (ångstroms). Es el componente estructural básico de todos los demás elementos grafíticos, incluidos el propio grafito, los nanotubos de carbono y los fullerenos.
A esta estructura también se le puede considerar una molécula aromática extremadamente extensa en las dos direcciones espaciales. Es decir, sería el caso límite de una familia de moléculas planas de hidrocarburos aromáticos policíclicos denominada grafenos.
El grafeno es un alótropo del carbono, un teselado
hexagonal plano (como panal de abeja) formado por átomos de carbono y enlaces covalentes que se generan a partir de la superposición de los híbridos sp2 de los carbonos enlazados.
El Premio Nobel de Física de 2010 se le otorgó a Andre Geim y a Konstantin Novoselov por sus revolucionarios descubrimientos acerca del material bidimensional grafeno.[1] [2]
Mediante la hibridación sp2 se explican mejor los ángulos de enlace, a 120°, de la estructura hexagonal del grafeno. Como cada uno de los carbonos contiene cuatro electrones de valencia en el estado hibridado, tres de esos electrones se alojan en los híbridos sp2, y forman el esqueleto de enlaces covalentes simples de la estructura.
El electrón sobrante se aloja en un orbital atómico de tipo «p» perpendicular al plano de los híbridos. El solapamiento lateral de dichos orbitales da lugar a formación de orbitales de tipo π. Algunas de estas combinaciones propician un gigantesco orbital molecular deslocalizado entre todos los átomos de carbono que constituyen la capa de grafeno.
El nombre proviene de intercambio –en el vocablo grafito– de sufijos: «ito» por «eno»: propio de los carbonos con enlaces dobles. En realidad, la estructura del grafito puede considerarse una pila de gran cantidad de láminas de grafeno superpuestas.[3] Los enlaces entre las distintas capas de grafeno apiladas se deben a fuerzas de Van der Waals e interacciones de los orbitales π de los átomos de carbono.
Estructura cristalina del grafito. Se ilustran las interacciones de las diversas capas de anillos aromáticos condensados.
En el grafeno, la longitud de los enlaces carbono-carbono es de aproximadamente 1,42 Å (ångstroms). Es el componente estructural básico de todos los demás elementos grafíticos, incluidos el propio grafito, los nanotubos de carbono y los fullerenos.
A esta estructura también se le puede considerar una molécula aromática extremadamente extensa en las dos direcciones espaciales. Es decir, sería el caso límite de una familia de moléculas planas de hidrocarburos aromáticos policíclicos denominada grafenos.
Diferencia electricidad y electrónica
Electricidad:La
electricidad es el conjunto de fenómenos físicos relacionados con la
presencia y flujo de cargas eléctricas. Se manifiesta en una gran
variedad de fenómenos como los rayos, la electricidad estática, la
inducción electromagnética o el flujo de corriente eléctrica.
Las cargas eléctricas producen campos electromagnéticos que interaccionan con otras cargas. La electricidad se manifiesta en varios fenómenos:
Carga eléctrica: una propiedad de algunas partículas subatómicas, que determina su interacción electromagnética. La materia eléctricamente cargada produce y es influenciada por los campos electromagnéticos.
Corriente eléctrica: un flujo o desplazamiento de partículas cargadas eléctricamente; se mide en amperios.
Campo eléctrico: un tipo de campo electromagnético producido por una carga eléctrica incluso cuando no se esta moviendo. El campo eléctrico produce una fuerza en toda otra carga, menor cuanto mayor sea la distancia que separa las dos cargas. Además las cargas en movimiento producen campos magnéticos.
Potencial eléctrico: es la capacidad que tiene un campo eléctrico de realizar trabajo; se mide en voltios.
Magnetismo: La corriente eléctrica produce campos magnéticos, y los campos magnéticos variables en el tiempo generan corriente eléctrica.
En ingeniería eléctrica, la electricidad se usa para generar:
luz mediante lámparas
calor, aprovechando el efecto Joule
movimiento, mediante motores que transforman la energía eléctrica en energía mecánica
señales mediante sistemas electrónicos, compuestos de circuitos eléctricos que incluyen componentes activos y componentes pasivos como resistores, inductores y condensadores.
El fenómeno de la electricidad ha sido estudiado desde la antigüedad, pero su estudio científico sistemático no comenzó hasta los siglos XVII y XVIII. A finales del siglo XIX los ingenieros lograron aprovecharla para uso residencial e industrial. La rápida expansión de la tecnología eléctrica en esta época transformó la industria y la sociedad. La electricidad es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporte, climatización, iluminación y computación. La electricidad es la columna vertebral de la sociedad industrial moderna.
Electronica:La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.
Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.
Conclusion:estos dos conseptos son materiales cuya resistensia al paso de la electricidad es muy baja los mejores conductores son materiales como el cobre, el oro, el fierro y el aluminio lo cual ocupa mas resistensi al paso de la corriente.
Las cargas eléctricas producen campos electromagnéticos que interaccionan con otras cargas. La electricidad se manifiesta en varios fenómenos:
Carga eléctrica: una propiedad de algunas partículas subatómicas, que determina su interacción electromagnética. La materia eléctricamente cargada produce y es influenciada por los campos electromagnéticos.
Corriente eléctrica: un flujo o desplazamiento de partículas cargadas eléctricamente; se mide en amperios.
Campo eléctrico: un tipo de campo electromagnético producido por una carga eléctrica incluso cuando no se esta moviendo. El campo eléctrico produce una fuerza en toda otra carga, menor cuanto mayor sea la distancia que separa las dos cargas. Además las cargas en movimiento producen campos magnéticos.
Potencial eléctrico: es la capacidad que tiene un campo eléctrico de realizar trabajo; se mide en voltios.
Magnetismo: La corriente eléctrica produce campos magnéticos, y los campos magnéticos variables en el tiempo generan corriente eléctrica.
En ingeniería eléctrica, la electricidad se usa para generar:
luz mediante lámparas
calor, aprovechando el efecto Joule
movimiento, mediante motores que transforman la energía eléctrica en energía mecánica
señales mediante sistemas electrónicos, compuestos de circuitos eléctricos que incluyen componentes activos y componentes pasivos como resistores, inductores y condensadores.
El fenómeno de la electricidad ha sido estudiado desde la antigüedad, pero su estudio científico sistemático no comenzó hasta los siglos XVII y XVIII. A finales del siglo XIX los ingenieros lograron aprovecharla para uso residencial e industrial. La rápida expansión de la tecnología eléctrica en esta época transformó la industria y la sociedad. La electricidad es una forma de energía tan versátil que tiene un sinnúmero de aplicaciones, por ejemplo: transporte, climatización, iluminación y computación. La electricidad es la columna vertebral de la sociedad industrial moderna.
Electronica:La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.
Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la gran construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.
Conclusion:estos dos conseptos son materiales cuya resistensia al paso de la electricidad es muy baja los mejores conductores son materiales como el cobre, el oro, el fierro y el aluminio lo cual ocupa mas resistensi al paso de la corriente.
Los aislantes
Aislante hace referencia a cualquier material que
impide la transmisión de la energía en cualquiera de sus formas: con
masa que impide el transporte de energía como pueden ser los distintos
tipos de aislantes como son:
Aislantes acustico : Aislar supone impedir que un sonido penetre en un medio, o que salga de él; por ello, la función de los materiales aislantes, dependiendo de donde estén, puede ser o bien, reflejar la mayor parte de la energía que reciben (en el exterior), o bien, por el comienzo a.
Aislante electrico: El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, un material que resiste el paso de la corriente a través del elemento que alberga y lo mantiene en su desplazamiento a lo largo del semiconductor. Dicho material se denomina aislante eléctrico.
Cinta aislante eléctrica.
La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad.
Aislante de microondas: Un aislador es un dispositivo de dos puertas que presenta baja atenuación o pérdidas de inserción cuando la potencia pasa de la puerta 1 a la 2, pero que tiene un gran aislamiento o pérdidas cuando la potencia entra por 2 y se dirige hacia 1. El aislador debe disipar esta potencia y no reflejarla.
Aislantes de barrera: Un aislador es un equipo de bioseguridad que provee una barrera protectora física entre el técnico laboratorista y el proceso que realiza, a la vez que crea un ambiente confinado, estéril y aséptico. Este equipo protege de la contaminación tanto al operario como al producto que se manipula. Estos equipos son usados principalmente por la industria farmaceútica para la manipulación de sustancias peligrosas o tóxicas.
Aislantes acustico : Aislar supone impedir que un sonido penetre en un medio, o que salga de él; por ello, la función de los materiales aislantes, dependiendo de donde estén, puede ser o bien, reflejar la mayor parte de la energía que reciben (en el exterior), o bien, por el comienzo a.
Aislante electrico: El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, un material que resiste el paso de la corriente a través del elemento que alberga y lo mantiene en su desplazamiento a lo largo del semiconductor. Dicho material se denomina aislante eléctrico.
Cinta aislante eléctrica.
La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad.
Aislante de microondas: Un aislador es un dispositivo de dos puertas que presenta baja atenuación o pérdidas de inserción cuando la potencia pasa de la puerta 1 a la 2, pero que tiene un gran aislamiento o pérdidas cuando la potencia entra por 2 y se dirige hacia 1. El aislador debe disipar esta potencia y no reflejarla.
Aislantes de barrera: Un aislador es un equipo de bioseguridad que provee una barrera protectora física entre el técnico laboratorista y el proceso que realiza, a la vez que crea un ambiente confinado, estéril y aséptico. Este equipo protege de la contaminación tanto al operario como al producto que se manipula. Estos equipos son usados principalmente por la industria farmaceútica para la manipulación de sustancias peligrosas o tóxicas.
Unidades de voltajes, corriente y resistencia
Voltaje: El voltaje
es la energía potencial eléctrica por unidad de carga, medido en julios
por culombio. A menudo es referido como "el potencial eléctrico", el
cual se debe distinguir de la energía de potencial eléctrico, haciendo
notar que el "potencial" es una cantidad por unidad de carga. Al igual
que con la energía potencial mecánica, el cero de potencial se puede
asignar a cualquier punto del circuito, de modo que la diferencia de
voltaje, es la cantidad fisicamente significativa. La diferencia de
voltaje medido, cuando se mueve del punto A al punto B, es igual al
trabajo que debe realizarse por unidad de carga contra el campo
eléctrico, para mover la carga desde A hasta B.
Corriente: La corriente o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. [1] Se debe al movimiento de las cargas en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s, unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
Resistensia: Se le llama resistencia eléctrica a la mayor o menor oposición que tienen los electrones para desplazarse a través de un conductor. La unidad de resistencia en el sistema internacional es el ohm, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre. La resistencia está dada por la siguiente fórmula:
R=P L/S
Corriente: La corriente o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material. [1] Se debe al movimiento de las cargas en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s, unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.
Resistensia: Se le llama resistencia eléctrica a la mayor o menor oposición que tienen los electrones para desplazarse a través de un conductor. La unidad de resistencia en el sistema internacional es el ohm, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre. La resistencia está dada por la siguiente fórmula:
R=P L/S
Diferencia entre cable y alambre
Cable: Se llama cable a un
conductor o conjunto de ellos generalmente recubierto de un material
aislante o protector, si bien también se usa el nombre de cable para
transmisores de luz o esfuerzo mecánico.Los cables cuyo propósito es
conducir electricidad se fabrican generalmente de cobre, debido a la
excelente conductividad de este material, o de aluminio que aunque posee
menor conductividad es más económico.
Generalmente cuenta con aislamiento en el orden de 500 µm hasta los 5 cm; dicho aislamiento es plástico, su tipo y grosor dependerá del nivel de tensión de trabajo, la corriente nominal, de la temperatura ambiente y de la temperatura de servicio del conductor.
Alambre: Se denomina alambre a todo tipo de hilo delgado que se obtiene por estiramiento de los diferentes metales de acuerdo con la propiedad de ductilidad que poseen los mismos. Los principales metales para la producción de alambre son: hierro, cobre, latón, plata, aluminio, entre otros. Sin embargo, antiguamente se llamaba alambre al cobre y sus aleaciones de bronce y latón. El alambre se emplea desde muchos siglos antes de nuestra era. El procedimiento de fabricación más antiguo consistía en batir láminas de metal hasta darles el espesor requerido, y cortalas luego en tiras estrechas que se redondeaban a golpes de martillo para convertirlas en alambre. Dicho procedimiento se aplicó hasta mediados del siglo XIV. Sin embargo, en excavaciones arqueológicas se han encontrado alambres de latón de hace más de 2000 años que al ser examinados presentaron indicios de que su fabricación podría atribuirse al procedimiento de la hilera. Hilera es una plancha de metal, que posee varios agujeros de distintos diametros.
Generalmente cuenta con aislamiento en el orden de 500 µm hasta los 5 cm; dicho aislamiento es plástico, su tipo y grosor dependerá del nivel de tensión de trabajo, la corriente nominal, de la temperatura ambiente y de la temperatura de servicio del conductor.
Alambre: Se denomina alambre a todo tipo de hilo delgado que se obtiene por estiramiento de los diferentes metales de acuerdo con la propiedad de ductilidad que poseen los mismos. Los principales metales para la producción de alambre son: hierro, cobre, latón, plata, aluminio, entre otros. Sin embargo, antiguamente se llamaba alambre al cobre y sus aleaciones de bronce y latón. El alambre se emplea desde muchos siglos antes de nuestra era. El procedimiento de fabricación más antiguo consistía en batir láminas de metal hasta darles el espesor requerido, y cortalas luego en tiras estrechas que se redondeaban a golpes de martillo para convertirlas en alambre. Dicho procedimiento se aplicó hasta mediados del siglo XIV. Sin embargo, en excavaciones arqueológicas se han encontrado alambres de latón de hace más de 2000 años que al ser examinados presentaron indicios de que su fabricación podría atribuirse al procedimiento de la hilera. Hilera es una plancha de metal, que posee varios agujeros de distintos diametros.
¿Que es trabajo y potencia ?
Trabajo: En mecánica clásica, el
trabajo que realiza una fuerza sobre un cuerpo equivale a la energía
necesaria para desplazar este cuerpo. El trabajo es una magnitud física
escalar que se representa con la letra y se expresa en unidades de
energía, esto es en julios o joules en el Sistema Internacional de
Unidades.
Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Matemáticamente se expresa como:
W=F.D=F.D COS INFITITO
Potensia: Cantidad de trabajo efectuado por una unidad de tiempo.
Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:
P=WT
Ya que por definición el trabajo es un tránsito de energía, nunca se refiere a él como incremento de trabajo, ni se simboliza como ΔW.
Matemáticamente se expresa como:
W=F.D=F.D COS INFITITO
Potensia: Cantidad de trabajo efectuado por una unidad de tiempo.
Si W es la cantidad de trabajo realizado durante un intervalo de tiempo de duración Δt, la potencia media durante ese intervalo está dada por la relación:
P=WT
Suscribirse a:
Entradas (Atom)